3.105 \(\int \frac{A+C \cos ^2(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=109 \[ \frac{\sqrt{2} (A+C) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 C \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 a d}-\frac{4 C \sin (c+d x)}{3 d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(Sqrt[2]*(A + C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) - (4*C*Sin[c
+ d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*C*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.140764, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {3024, 2751, 2649, 206} \[ \frac{\sqrt{2} (A+C) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 C \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 a d}-\frac{4 C \sin (c+d x)}{3 d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Sqrt[2]*(A + C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) - (4*C*Sin[c
+ d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*C*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*a*d)

Rule 3024

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp
[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x]
)^m*Simp[A*b*(m + 2) + b*C*(m + 1) - a*C*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] &&  !LtQ[
m, -1]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+C \cos ^2(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx &=\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 a d}+\frac{2 \int \frac{\frac{1}{2} a (3 A+C)-a C \cos (c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx}{3 a}\\ &=-\frac{4 C \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 a d}+(A+C) \int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx\\ &=-\frac{4 C \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 a d}-\frac{(2 (A+C)) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{2} (A+C) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}-\frac{4 C \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 C \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 a d}\\ \end{align*}

Mathematica [A]  time = 0.104136, size = 63, normalized size = 0.58 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \left (3 (A+C) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-4 C \sin ^3\left (\frac{1}{2} (c+d x)\right )\right )}{3 d \sqrt{a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*Cos[(c + d*x)/2]*(3*(A + C)*ArcTanh[Sin[(c + d*x)/2]] - 4*C*Sin[(c + d*x)/2]^3))/(3*d*Sqrt[a*(1 + Cos[c + d
*x])])

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 173, normalized size = 1.6 \begin{align*}{\frac{\sqrt{2}}{3\,d}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -4\,C\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+3\,A\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) a+3\,C\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) a \right ){a}^{-{\frac{3}{2}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{a \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

1/3*cos(1/2*d*x+1/2*c)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*C*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*sin
(1/2*d*x+1/2*c)^2+3*A*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a+3*C*ln(4/cos(1/2*d
*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a)/a^(3/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(
1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.62127, size = 392, normalized size = 3.6 \begin{align*} \frac{4 \,{\left (C \cos \left (d x + c\right ) - C\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right ) + \frac{3 \, \sqrt{2}{\left ({\left (A + C\right )} a \cos \left (d x + c\right ) +{\left (A + C\right )} a\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} - \frac{2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt{a}}}{6 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/6*(4*(C*cos(d*x + c) - C)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c) + 3*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C
)*a)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos
(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.79155, size = 116, normalized size = 1.06 \begin{align*} -\frac{\frac{4 \, \sqrt{2} C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{3}{2}}} + \frac{3 \, \sqrt{2}{\left (A + C\right )} \log \left ({\left | -\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{a}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/3*(4*sqrt(2)*C*a*tan(1/2*d*x + 1/2*c)^3/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2) + 3*sqrt(2)*(A + C)*log(abs(-s
qrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/sqrt(a))/d